Problema de Monty Hall o Paradoja de las Tres Puertas
Supón que estás en un concurso, y se te ofrece escoger entre tres puertas: detrás de una de ellas hay un coche, y detrás de las otras, cabras. Escoges una puerta, digamos la nº1, y el presentador, que sabe lo que hay detrás de las puertas, abre otra, digamos la nº3, que contiene una cabra. Entonces te pregunta: "¿No prefieres escoger la nº2?". ¿Es mejor para ti cambiar tu elección?
El sentido común dicta que no hay diferencia entre cambiar o no la elección de la puerta, sin embargo, el problema tiene trampa, ya que si nos quedamos con la puerta elegida inicialmente tenemos menos probabilidades de acierto que si cambiamos de puerta.
La probabilidad de que el concursante escoja en su primera oportunidad la puerta que oculta el coche es de 1/3, por lo que la probabilidad de que el coche se encuentre en una de las puertas que no ha escogido es de 2/3. ¿Qué cambia cuando el presentador muestra una cabra tras una de las otras dos puertas?
Una suposición errónea es que, una vez sólo queden dos puertas, ambas tienen la misma probabilidad (un 50%) de contener el coche. Es errónea ya que el presentador abre la puerta después de la elección del jugador. Esto es, la elección del jugador afecta a la puerta que abre el presentador. No es un suceso aleatorio ni inconexo.
Si el jugador escoge en su primera opción la puerta que contiene el coche (con una probabilidad de 1/3), entonces el presentador puede abrir cualquiera de las otras dos puertas. Además, el jugador pierde el coche si cambia cuando se le ofrece la oportunidad.
Pero, si el jugador escoge una cabra en su primera opción (con una probabilidad de 2/3), el presentador sólo tiene la opción de abrir una puerta, y esta es la única puerta restante que contiene una cabra. En ese caso, la puerta restante tiene que contener el coche, por lo que cambiando lo gana.
En resumen, si mantiene su elección original gana si escogió originalmente el coche (con probabilidad de 1/3), mientras que si cambia, gana si escogió originalmente una de las dos cabras (con probabilidad de 2/3). Por lo tanto, el concursante debe cambiar su elección si quiere maximizar la probabilidad de ganar el coche.
¿Por qué sucede esto? Porque lo que muestra el presentador no afecta a tu elección original, solo a la otra puerta no escogida. Una vez que se abre una puerta y se muestra la cabra, esa puerta tiene una probabilidad igual a 0 de contener un coche, por lo que deja de tenerse en cuenta. Si el conjunto de dos puertas tenía una probabilidad de 2/3 de contener el coche, entonces, si una tiene una probabilidad de 0, la otra debe tener una probabilidad de 2/3. La elección consiste en preguntarte si prefieres seguir con tu puerta original o escoger las otras dos puertas. La probabilidad de 2/3 se traspasa a la otra puerta no escogida (en lugar de dividirse entre las dos puertas restantes de modo que ambas tengan una probabilidad de 1/3) porque en ningún caso puede el presentador abrir la puerta escogida inicialmente. Si el presentador escogiese al azar y abriese una de las dos puertas con cabras (siendo una de estas posiblemente la del concursante), y luego diese de nuevo una posibilidad de elegir entre las demás, entonces las dos puertas restantes sí tendrían la misma probabilidad de contener el coche.
El sentido común dicta que no hay diferencia entre cambiar o no la elección de la puerta, sin embargo, el problema tiene trampa, ya que si nos quedamos con la puerta elegida inicialmente tenemos menos probabilidades de acierto que si cambiamos de puerta.
La probabilidad de que el concursante escoja en su primera oportunidad la puerta que oculta el coche es de 1/3, por lo que la probabilidad de que el coche se encuentre en una de las puertas que no ha escogido es de 2/3. ¿Qué cambia cuando el presentador muestra una cabra tras una de las otras dos puertas?
Una suposición errónea es que, una vez sólo queden dos puertas, ambas tienen la misma probabilidad (un 50%) de contener el coche. Es errónea ya que el presentador abre la puerta después de la elección del jugador. Esto es, la elección del jugador afecta a la puerta que abre el presentador. No es un suceso aleatorio ni inconexo.
Si el jugador escoge en su primera opción la puerta que contiene el coche (con una probabilidad de 1/3), entonces el presentador puede abrir cualquiera de las otras dos puertas. Además, el jugador pierde el coche si cambia cuando se le ofrece la oportunidad.
Pero, si el jugador escoge una cabra en su primera opción (con una probabilidad de 2/3), el presentador sólo tiene la opción de abrir una puerta, y esta es la única puerta restante que contiene una cabra. En ese caso, la puerta restante tiene que contener el coche, por lo que cambiando lo gana.
En resumen, si mantiene su elección original gana si escogió originalmente el coche (con probabilidad de 1/3), mientras que si cambia, gana si escogió originalmente una de las dos cabras (con probabilidad de 2/3). Por lo tanto, el concursante debe cambiar su elección si quiere maximizar la probabilidad de ganar el coche.
¿Por qué sucede esto? Porque lo que muestra el presentador no afecta a tu elección original, solo a la otra puerta no escogida. Una vez que se abre una puerta y se muestra la cabra, esa puerta tiene una probabilidad igual a 0 de contener un coche, por lo que deja de tenerse en cuenta. Si el conjunto de dos puertas tenía una probabilidad de 2/3 de contener el coche, entonces, si una tiene una probabilidad de 0, la otra debe tener una probabilidad de 2/3. La elección consiste en preguntarte si prefieres seguir con tu puerta original o escoger las otras dos puertas. La probabilidad de 2/3 se traspasa a la otra puerta no escogida (en lugar de dividirse entre las dos puertas restantes de modo que ambas tengan una probabilidad de 1/3) porque en ningún caso puede el presentador abrir la puerta escogida inicialmente. Si el presentador escogiese al azar y abriese una de las dos puertas con cabras (siendo una de estas posiblemente la del concursante), y luego diese de nuevo una posibilidad de elegir entre las demás, entonces las dos puertas restantes sí tendrían la misma probabilidad de contener el coche.
No hay comentarios.:
Publicar un comentario